leetcode 377 Combination Sum IV
z

Given an integer array with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target.

Example:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
nums = [1, 2, 3]
target = 4

The possible combination ways are:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)

Note that different sequences are counted as different combinations.

Therefore the output is 7.

Follow up:
What if negative numbers are allowed in the given array?
How does it change the problem?
What limitation we need to add to the question to allow negative numbers?

Credits:
Special thanks to @pbrother for adding this problem and creating all test cases.


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

public class CombinationSumIV {
/*
Given an integer array with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target.

Example:

nums = [1, 2, 3]
target = 4

The possible combination ways are:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)

Note that different sequences are counted as different combinations.

Therefore the output is 7.
*/


// 可以,但是太耗时了。
static int count = 0;
public static int combinationSum4(int[] nums, int target) {
List<ArrayList<Integer>> ans = new ArrayList<>();
ArrayList<Integer> temp = new ArrayList<>();
dfs(nums, target, temp, 0);
return count;
}
public static void dfs(int[] nums, int target, ArrayList<Integer> temp, int k){
int sum = 0;
for (int i: temp){
sum += i;
}
if (sum == target){
count ++;
return ;
}
else if (sum > target){
return ;
}
else {
for (int i=0; i<nums.length; i++){
temp.add(nums[i]);
dfs(nums, target, temp, k+1);
temp.remove(temp.size()-1);
}
}
}

public static int combinationSum4DP(int[] nums, int target){
if (target == 0){
return 1;
}
int res = 0;
for (int i=0; i<nums.length; i++){
if (target > nums[i])
res += combinationSum4DP(nums, target-nums[i]);
}
return res;
}

public static int combinationSum4DPII(int[] nums, int target){

int[] dp = new int[target+1];
dp[0] = 1;
for (int sum=1; sum<=target; sum++){
for (int i=0; i<nums.length; i++){
if (sum - nums[i] >=0)
dp[sum] += dp[sum-nums[i]];
}
}
return dp[target];
}

public static void main(String[] args){
System.out.println(combinationSum4(new int[]{1,2,3}, 32));
}
}